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The Crystal Structure of Some Hexakis(methyl cyanide)metal(IT)
Tetrachlorometallates(I1T), M(IT)(NCCH3;)s[ M(III)Cl4)2
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Crystals of Fe'')NCCH,)s[Fe''Cl,], are trigonal with space group P3. The lattice dimensions are
a=11-682 (6) and c=6-134 (4) A. Diffractometer data (Mo Ku radiation) were used. After correction
for twinning (twinning percentage 14-1) anisotropic refinement with 1650 observed reflexions resulted
in an R,, value of 0-047. The structure is composed of rows of (FeCl,)~ tetrahedra and Fe(NCCH;)2+
octahedra. A number of interatomic distances are given. The isomorphous complex Mg(NCCH3)(AICL),
(photographic Weissenberg data) is discussed and the related compound Ni(NCCH3;)s(GaCl,), (preces-

sion data) is briefly mentioned.

Introduction

Complexes M(II) (NCCH,)[MII)CL], [hereafter
M(ID)-M(ID)], in which M(II) is Mg, Cd or a divalent
metal of the first transition series and M(III) is B, Al,
Fe, Ga, In or Tl, were investigated by Reedijk &
Groeneveld (1968a). X-ray powder patterns show that,
with the exception of Cu compounds (forming a class
by themselves), three different types of structure (A4,
B, C) occur in this series. M6ssbauer measurements,
infrared spectra (Reedijk & Groeneveld, 1968b), mag-
netic susceptibilities and e.p.r. spectra (Reedijk, 1969)
indicate that the M(II)NCCH;);* and MIII)Cly
ions have octahedral and tetrahedral shapes respec-
tively, but an exact assignment of the molecular sym-
metry could not be achieved with these techniques.

It was thought interesting to investigate the exact
geometry and symmetry of these complex ions by
means of X-ray diffraction, and to establish the rela-
tionship between the different polymorphs and the
sizes and symmetries of the anions and cations. Since
most of the complexes are highly sensitive to moisture,
the choice of compounds suitable for X-ray work is
limited. The analysis was started with Mg(NCCH,),
(AICl,), (type A), this complex containing relatively
light metal atoms. Although its structure could be re-
fined to a reasonable degree of accuracy (R=0-18), we
encountered a number of inconsistencies between cal-
culated and observed structure factors, perhaps due to
disorder phenomena (see below). Therefore we decided
to analyse Fe(NCCH,),(FeCl,),, also belonging to
type 4.

As an example f a C-type structure we investigated
crystals of Ni{NCCHj,),(GaCl,),. Its structure is related
to that of A4, but so far no solution could be found.
Closely related to type A is the structure of Fe(NCH)s
(FeCl,), proposed by Constant, Daran & Jeannin
(1970). Brief comments on the two structures in rela-
tion to the A-type structure are given in the present

article. The B-type structure displays a very intricate
powder diffraction pattern and has, so far, not been
investigated by us.

Experimental

The complexes were obtained by dissolving stoichio-
metric amounts of the divalent and trivalent metal
chlorides in an excess of methyl cyanide. The Mg-Al
compound was prepared using the adduct
AICI;.2CH,;CN instead of AlCl; (Reedijk, 1968). After
cooling, the complexes crystallized. The type 4 Mg-Al
and Fe-Fe compounds consist of white and green-
yellow, hexagonally prismatic crystals respectively. The
type C Ni-Ga compound consists of pale blue thin
hexagonal plates. The crystals were filtered, washed
with cold methyl cyanide and dried in vacuo. Because
of their extreme sensitivity to moisture the crystals
were inserted into glass capillaries. After immersion in
liquid paraffin, which was dried several times with
P,0s, the capillaries were sealed.

Cell dimensions of the Mg—Al compound were deter-
mined from zero-layer Weissenberg photographs taken
about [010] and [001] with unfiltered copper radiation
(Ao =1-54051 A, Agny=1-54433 A, 24;=1-39217 A)
superposed with aluminum powder lines (a=4-0492 A
at 20°C) for calibration purposes. Non-integrated in-
tensity data were obtained with the equi-inclination
Weissenberg method (multiple-film technique) from
crystals mounted about [001] and [010] using Ni-fil-
tered Cu Ko radiation. Intensities from six levels about
[001] (/=0 up to 5) and ten levels about [010] (k=0up
to 9) were estimated visually and reduced to structure-
factor moduli in the usual way. An absorption correc-
tion was applied to the ¢ axis data, assuming a cylin-
drical cross-section for the crystal used (r~0-02 cm,
ur=1:6). On the basis of the b-axis data, the c-axis
data comprising 821 symmetry-independent reflexions
(including 126 non-observed ones) were put on a com-
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mon scale. Non-observed reflexions were given inten-
sity values equal to the lowest measured intensity.
The lattice parameters, as well as the X-ray intensity
data of the Fe-Fe compound, were measured on a
Nonius three-circle diffractometer using Zr-filtered
Mo Ka radiation (A=0-71069 A). According to the
classification rules of Arndt & Willis (1966) the gonio-
stat has normal-beam equatorial diffraction geometry,
with y-motion restricted between 0 and —90°. A hex-
agonally prismatic crystal with approximate dimen-
sions 0-15x0-15x0-6 mm was mounted about [001].
The intensities were collected by means of the 6-28
scan mode to a maximum @ value of 35°; high inten-
sities were reduced by using attenuation filters. The
background intensity was measured at each side of a
reflexion for half the scanning time. A reflexion was
considered significant if the net count exceeded twice
the standard deviation. The number of observed sym-
metry-dependent reflexions having positive glancing
angles was 2374 and that with negative values 341. An
absorption correction was applied according to the
Monte Carlo method as programmed by de Graaff
(1972). The repeated measurements of a number of
standard reflexions ensured the correction for the de-
crease in scattering power of the crystal by means of
a polynomial function of the exposure time. An aver-
age was taken of the symmetry-dependent reflexions

Fig. 1. A simplified model for disorder or twinning: the
orientation of AB3 groups about the threefold rotation axis
z in the Fe-Fe structure. The solid lines alone represent
the ordered structure; the solid and dashed liaes in statis-
tical distribution the disorder; the solid lines in one part of
the lattice and the dashed lines in another part of the crystal
describe the twinned structure.

HEXAKIS(METHYL CYANIDE)METAL(II) TETRACHLOROMETALUATES(III)

and all data were reduced to structure factors in the
usual way. A total of 1755 observed reflexions re-
mained including 266 pairs #k/ and Ak, and 595 non-
observed ones including 31 pairs 4k/ and hkI.

The cell dimensions of the Ni-Ga compound were
determined with Mo Ko radiation from 4kO and 0k/
precession photographs. Film shrinkage was corrected
for.

Both the symmetry relations in reciprocal space and
the Patterson function of the compounds Mg-Al and
Fe-Fe exclude all space groups except P3 and P3. For
the present the space group P3 was assumed; an
R,-ratio test (Hamilton, 1965) justified this assump-
tion. Crystals of the Mg—Al compound floated on CCl,
(density of 1-6 g.cm™3). Hence the unit cell contains
one formula unit Mg-Al.

The Ni-Ga complex has the space group P3 or P3.
The cell volume is about six times that of the Fe-Fe
compound [e(Ni-Ga)~a(Fe-Fe))/3; ¢(Ni-Ga)~
2c¢(Fe-Fe)]. Reflexions with #—k=3n+1 are not pres-
ent if /=0 or /=2n+1, and are always weak this in-
dicates a subcell with dimensions of the Fe-Fe com-
pound. Crystal data for the three compounds are given
in Table 1.

Structure determination and refinement

The presence of one formula unit of the M(IT)-M(III)
compound in a unit cell with symmetry P3 requires
that the three metal ions and two chlorine ions CI(2)
and CI(4) be in the special positions 0,0,z, 1,2,z and
4,1,z. The remaining ions CI(1), CI(3) and the ligand
atoms are accommodated in general positions. An ap-
proximate model for the structure of the Mg-Al com-
pound was derived from a Patterson map and succes-
sive Fourier syntheses. The Patterson function of the
Fe-Fe compound showed that the two structures were
isomorphous.

During the least-squares refinement of the Fe-Fe
and Mg-Al structures, the following scattering factors
were used: (1) the values for Fe?*, Fe3* and Cl~ ions
evaluated by Cromer & Waber (1965), (2) those for
Mg?*+, AB*, N and C (valence) from International
Tables for X-ray Crystallography (1962), all values ex-
cept those for nitrogen and carbon being corrected
for the real part of the anomalous scattering. The imagi-
nary part of the scattering factor was not taken into
account.

Table 1. Unit-cell parameters of three compounds M(II)(NCCH,)[M(II)Cl,),

The numbers in brackets are estimated standard deviations in terms of the last decimal given.

M(ID)-M(I1) Mg-Al Fe-Fe Ni-Ga

Space group P3 P3 P3or P3

a 11-693 (5) 11-682 (6) 20-526 (4) A

c 6151 (3) 6134 (4) 11-879 3) A
d(calc) 1-387 1-597 1-637 g.cm~3

14 7283 7250 4334-4 A3

V4 1 1 6

u 86 (Cu Ka) 22:5 (Mo Ko) 33:4 cm-t (Mo Ko)
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I. The Fe-Fe compound

As a starting point for the Fe-Fe compound the
Mg—Al model was used. The weights used during the
refinements were w(F,)=[o(F,)]-2 Refining all atoms
except hydrogen in four cycles with an overall tempera-
ture factor and in four cycles with individual isotropic
temperature factors reduced the reliability index R to
0-110 (omitting non-observed reflexions) and the
weighted index R,, to 0-138, where

R=|F,—F./S|| > F,
and

Rw=[ Z W(Fo) (Fo_Fc/S)Z/ Z W(Fo)Fi]”Z'
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The scaling factor 1/S reduces F, to the scale of F,.
A refinement with anisotropic temperature factors dur-
ing 5 cycles was executed and the R index dropped to
0-079, and R,, to 0-097.

On inspection of the agreement between observed
and calculated structure factors, large discrepancies
were detected in some cases. For reflexions with h#k
we observed that [|F,(hkl)|—|F,(khl)|<||F.(hk])] -
|F.(khl)||. Accepting the model as essentially cor-
rect the discrepancies occurring may be due either to
disorder or to twinning. The first case would involve
a mixing of positions x, y, z and y, x, z, the second a
mixing of reflexions sk/ and kAl (Fig. 1).

The disorder, or twinning, concerns atoms distrib-
uted over positions x, y, z and y, x, z. In the case of

Table 2. Observed (corrected for a twinning factor of 0-141) and calculated structure factors on an absolute scale
(x100)

The non-observed reflexions are indicated by an asterisk.
The reflexions treated as non-observed are indicated by negative F, values. A complete list including the 4 and B parts is available
upon request.
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disorder the distribution is statistical and would result
in the symmetry P3Im for a 1:1 arrangement. The
twinned structure arises from the configuration x, y, z
in one part of the lattice and the configuration y, x, z
in another part. In this case (100) acts as mirror plane
for the separate individuals. The justification for these
assumptions can be seen in Fig. 2, the ultimate struc-
ture. All atoms in general positions are located near
one of the planes {3030} and only small rotations are
required to obtain the mirror configuration. In both
models an extra parameter, the occupation number p
(0<p<l),is introduced for occupation of position
x, y, z with contribution 1 —p and position y, x, z with
contribution p.

(a) Disorder

The contributions to the calculated structure factor
F are coherent and have to be added according to

Table 2
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Fo=F(x,y,2)+ F{(,x,2)
N

=(1—-p) > fyexp Rni(hx;+ky;+1z))]
A

N
+p zf, exp [2ri(hy;+kx;+1z})] . (1
J

Corresponding to the choice of origin (0,0,0, %, 4,0,
or %, 3, 0) there are three possibilities for introducing
disorder by means of a pseudo-mirror plane: through
the Fe(NCCHs;), octahedron, or through either one of
the two FeCl, tetrahedra. Difference maps calculated
after isotropic and anisotropic ‘ordered’ refinements in-
dicated that the first possibility (exchange of the two
FeCl, tetrahedra) was unlikely.

The refinement was executed with coupled atoms at
x, y, z and y, x, z, having equal isotropic thermal par-

(cont.)
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ameters, thus introducing only one new parameter, the
occupation number p.

The model with Cl(4) instead of CI(2) at the origin
showed the best agreement: R, =0-111 against 0-138.
This conclusion was also sustained by difference maps.
In both cases an occupation number p~1 was found.
The refinement of the best model was continued with
coupled anisotropic thermal parameters, and ultimately
resulted in R=0-073, R,=0-087 and p=0-133.

Using Hamilton’s R,-ratio test (1965) and accept-
ing the anisotropic ‘disordered’ model as zero hypothe-
sis we find that the anisotropic ‘ordered’ structure can
be rejected on a 0-005 significance level: R, (ratio)=
0-097/0-087=1-115 while R (1, 1664, 0-005)=1-003.
Nctwithstanding this encouraging result, we encoun-
tered a number of gross discrepancics between ob-
served and calculated structure factors. Notably the
reflexion 012 behaved badly during these refinements,

'
-
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having the values F,=13-5 and F,=25-4 after the final
cycle.

(b) Twinning

A twinned crystal with (100) as twinning plane
produces a diffraction pattern in which reflexions hkl
and khl coincide. Designating F, and F, as observed
structure factors for the twinned and untwinned struc-
tures respectively, one finds that

FoX(hkl)=(1—p)Fi(hkD)+pFi(khl) , @

where p is the twinning parameter. Instead of con-
sidering positions x, y, z and y, x, z we now add con-
tributions F2(hkl) and F%(khl) according to the equa-
tions

FX(hkl)~ (1 — p)FX(hkl) + pFX(khi)
F2(khl) ~ pF(hkl) + (1 — p)F¥khl) . 3)
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The twinning parameter is calculated from
, F0kl) = E2(kh)
* FX(hkl)—F¥khl) -

It must be pointed out that equations (3) and (4) are
only good approximations if p is small, since the ini-
tially calculated structure factors based upon an or-
dered model are biased by the twinning. From the fore-
going treatment of assumed disorder p is expected to
be smaller than, say, 0-20.

Using (4) we are now able to determine F_ for the
twinned structure:

F(hk1)=[(1 = p)F(hkD)+ pFe(khl)]"". )

Assuming that there are no errors whatsoever in F,
and F,, the following expression applies

Fo_Fc;=Fc_Fc," (6)

and, accordingly, the observed structure factor can be
corrected for twinning by adding the difference F,— F
to its observed value. With the new set of F, values,
the refinement of the structure was continued to ob-
tain a better model. Repeating the procedure, p was
redetermined using (4) and better values of F; and F,
were obtained using (5) and (6). The twinning param-
eter converged after five cycles to p=0-156.
According to a procedure explained in the Appendix
all symmetry-averaged reflexions were corrected for
twinning and given new weights. It was now pos-
sible to resume the least-squares refinement. Compar-

p=i- @

HEXAKIS(METHYL CYANIDE)METAL(II) TETRACHLOROMETALLATES(III)

ison of F, and F, after three cycles with isotropic tem-
perature factors gave an indication that the twinning
ratio was too high. After a few trials we accepted p=
0-141 as the best value.

The refinement was continued with anisotropic vi-
brational parameters. It indicated that the strongest
16 reflexions had too high weights. These reflexions
were assigned standard errors three times their original
values. The refinement converged towards R=0-049
(omitting non-observed reflexions) and R, =0-047.

With two exceptions, shifts were smaller than 0-4
times the standard errors. The shifts for C(3) and C(4)
equalled the standard deviations.

Hitherto the choice of space group was not settled.
We inspected the centrosymmetric structure with Fe(IT)
at the origin and average positions for the other atoms.
Strictly speaking, we should have redetermined the
parameter p, but we accepted the value 0-141, since
the centric structure differs slightly from the acentric
one and, moreover, p merely showed minor variations
during the trials with the various disorder and twinning
models. The anisotropic refinement converged for P3
towards R=0-054 and R,,=0-066. It can be seen (Table
6) that the centrosymmetric structure can be rejected
on a 0-005 significance level.

As a result of twinning, part of the structure passes
into its enantiomorphic form. A determination of the
absolute configuration was, therefore, not carried out.

The observed structure factors corrected for a twin-
ning factor of 0-141 and their corresponding calculated

Fig. 2. Projection on (001) plane.
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structure factors are listed in Table 2. The positional
parameters and their standard deviations are given in
Table 3 and the vibrational parameters, U, ;, in Table 4.

Table 3. Atomic parameters (in fractions of cell edges)
and their standard deviations (A)

x a(x) y a(y) z a(z)
Fe(l) % 0-0 3 00 —00420 0-006
Fe(2) % 0-0 E 0-0 0-0442 0-006
Fe(3) 0-0 0-0 0-0 00 0-0 0-0
Cl(1) 0-5201 0-004 0-6888 0-003 0-0631 0-006
Cl(2) 1 0-0 3 0-0 —04011 0-006
CI(3) 0-4872 0-005 0-:3290 0:004 —0-0740 0-006
Cl(4) % 00 % 0-0 0-:3997  0-007
N(1) —0-0124 0-010 0-1460 0:010 —0-1843 0-010
N(2) 0-0081 0-012 —0-1452 0-012 0:2289 0-012
C(1) —0:0103 0:012 0-2258 0-013 —0-2914 0-014
C(2) 0-0219 0-012 —0-2192 0-011 0-:3069 0-010
C@3) —-0-0183 0016 0-3307 0:014 —0-4320 0-015
C(4) 00271 0016 —0-3266 0-013 0-4229 0-012

Table 4. Vibrational parameters U,; (A2 (x 10°) in the
temperature factor exp [ —2n*2U;ja,*a*hih))
i

The estimated standard deviations in digits of the last figure
are given in parentheses.

Un Un Uss 201,  2Uz 2U13
Fe(1) 47 (1) 47(Q) 39(2) 47() 0 0
Fe(2) 45(1) 45(1) 40(2) 45(1) 0 0
Fe(3) 37 (1) 37(1) 49Q1) 37 (1) 0 0
CI(1) 43(1) 91(2) 73(2) 71 (3) —45(@3) -31()
Cl(2) 86 (3) 8 (3) 30(3) 86(3) 0 0
Cl(3) 70(2) 94(2) 54(2) 103 (9 10(3) -—-11(3)
Cl(4) 76 3) 76 (3) 39(3) 76(3) 0 0
N(1) 46 (5) 31 (4 363) 32() 15 (6) -8 (6)
N(2) 63(6) 52(5) S58(6) 73(9) 5(8) 37 (8)
(1) 25(4) 54(6) 80(8) 10 (8) —80(12) 109
C(2) 41 (5) 46(5) 40(5) 52(8) 46(7) 9 (M
C(@3) 76 (9) 56 (8) 94 (10) 100 (14) 9 (13) —12(14)
C@4) 63(8) 64(8) 55(6) 42(12) 87(12) 23(12)

In the space group P3 one atom must have a fixed
z parameter. As a result this atom, Fe(3), will have zero
standard deviation in its z parameter if full-matrix
refinement is applied.

I1. The Mg-Al compound

In the anisotropic refinement of the ordered struc-
ture (space group P3) disappointingly high indices R=
0-18 and R,,=0-21 were attained. Several models for
disorder were examined. The best model is a dis-
ordered arrangement with CI(4) at 0,0,0 and a partial
exchange of Mg(NCCHj;)s and AICI, groups. The itera-
tion with anisotropic vibrational parameters for the
chlorine atoms resulted in R=0-150, R, =0-166 and
p=0-322. The stumbling block, 012, still showed bad
agreement and a number of large B values in the range
between 7 and 11 A? were observed for a number of
atoms. Nevertheless, the overall agreement had in-
creased substantially. Accepting this model as zero

AC28B-10
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hypothesis, the ordered structure is rejected on a 0-005
significance level.

Since no improvement was obtained with the twinned
model as investigated for the Fe-Fe compound, we
accepted the disordered model with CI(4) at 0,0,0
and p=0-322. Its geometrical entities are listed in
Table 5.

Table 5. Distances (A) and angles (°) in Me(III)Cl,
tetrahedra and Me(Il) (NCCHj;)s octahedra

Estimated standard deviations in digits of the last decimal are
given in parentheses. a: Fe-Fe compound with twinning pa-
rameter p=0-141; b: the same as a but with constraint of
equal Fe(3)-N distances; c: disordered Mg-Al compound with
occupation number p=0-322.

Fe(1)/Al(1) tetrahedron  a b c
Fe(1)-Cl(1) 2-163 (4) 2:164 (4) 2:15(2)
Fe(1)-Cl(2) 2-203 (6) 2:228 (7) 2113 (4)
CI()-CI(1") 3-575 (6) 3-584 (7) 3-55 (3)
CI(1)-Cl(2) 3-517 (6) 3-532 (1) 3-45 (3)
CI()-Fe(1)-CI(1")  111-5(1) 111-8 (1) 1114 (8)
CI(2)-Fe(1)-CK(1) 107-4 (1) 107-1 (1) 107-5 (8)
Fe(2)/Al(2) tetrahedron

Fe(2)-CI(3) 2:195 (4) 2:194 (4) 2:14 (1)
Fe(2)-Cl(4) 2-180 (6) 2:153 (7) 2:07 (2)
Cl(3)-CI(3") 3-588 (7) 3-578 (7) 345 (1)
Cl1(3)-Cl(4) 3-568 (6) 3-554 (7) 347 (1)
Cl(3)-Fe(2)-CI(3) 109:7 (2) 109-3 (1) 107-9 (4)
Cl(4)-Fe(2)-CI(3")  109-3 (1) 109-7 (1) 111-0 (4)
Fe(3)/Mg octahedron

Fe(3)-N(1) 2-111 (9) 2:163 (3)

Fe(3)-N(2) 2-240 (11)

N(1)—Fe(3)-N(2) 173-5 (5) 180 (ass)
N(1)—Fe(3)-N(1") 94-0 (4) 89-7 (1)
N(2)—Fe(3)-N(2") 84-9 (4)

N(1)—Fe(3)-N(2) 912 (4) 90:3 (1)
N(1)—Fe(3)-N(2") 89:6 (4)

N(1)-N@1") 3:09 (2) 3:050 (5) 318 (7)
N(2)—N(2") 3-02(2) 299 (6)
N(1)—=N(@2" 311 (D 3:067 (5) 3-00 (4)
N(1)-N(@2") 307 (1) 307 4)

For neither the Fe-Fe nor the Mg-Al compound
were indications of macroscopic twinning found. An
alternative description is the occurrence of polysyn-
thetic microtwins or twinning domains as described
recently by Miiller (1971). The domains seem to be
very small in the Mg-Al compound resulting in an OD
structure (Dornberger-Schiff & Grell-Niemann, 1961).
Apparently these domains are larger in the Fe-Fe
compound. Nevertheless, the different e.s.d.’s of reflex-
ions hkil and hh2hl (see Appendix) might be an indica-
tion that the structure of the Fe-Fe compound cannot
be accepted as a pure case of twinning.

IIl. The Ni-Ga compound

Since reflexions Akl with A—k =3#n are much stronger
than those with A1—k=3n+1, we first attempted to
solve the structure of the subcell ¢'=c, a’=b"=a/V/3,
o =B'=90°, y'=120°. So far, no solution has been
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found. The Patterson function indicates that its struc-
ture is closely related to that of the Fe-Fe compound.

Discussion of the structures

Relevant interatomic distances and valence angles of
the compounds Fe-Fe and Mg-Al together with the
estimated standard deviations are listed in Table 5. It
must be emphasized that these standard errors are
grossly underestimated and do not reflect the uncer-
tainties due to twinning or disorder. A projection of
the structure on (001) is given in Fig. 2. Two inde-
pendent FeCl, tetrahedra are present at %, %, z and
%, §, z. Each FeCl, tetrahedron is repeated in the direc-
tion [001], giving rise to rows of tetrahedra. An ap-
proximate centre of symmetry relating the two tetra-
hedra exists on the position of Fe(II). Around this
Fe(II) ion we notice an octahedron of six N-C-CH;
groups.

A ligand-field spectrum of the compound Mg-Fe
(type A) was measured by Reedijk & Groeneveld
(1968a) and interpreted in terms of FeCl; ions in
tetrahedral configuration (Balt, 1967). In agreement
with this conclusion two quite regular FeCl, tetrahedra
are found in the Fe-Fe structure (see Table 5).

A Mossbauer spectrum (Reedijk & Groeneveld,
1968a) has indicated that the Fe-Fe compound con-
tains high-spin Fe(Il) and Fe(III) ions. The small iso-
mer shift of Fe(III) points to covalent bonds between
Fe(1I1) and the CI- ions. The average Fe—Cl distance
(2-18 A) agrees nicely with the value of 2:19 A found
in the structure of Fe(NCH).(FeCl,), (Constant, Daran
& Jeannin, 1970).

The average AI-Cl distance (2:13 A) in the Mg-Al
compound agrees very well with the average of Al-Cl
distances (2:13 A) in the AICI, tetrahedra of the com-
pound AlSeCl, (Stork-Blaisse & Romers, 1971).

Inspection of Table 5(a) shows that the octahedral
coordination of Fe(II) is distorted. We notice three
long and three short Fe-N distances (224 and 2-11 A)
and unequal N-C distances (Table 7). Far-infrared
spectra were, however, interpreted by Reedijk & Groe-
neveld (19685) in terms of equal Fe-N modes of vi-
bration. Moreover, infrared measurements (Reedijk,
Zuur & Groeneveld, 1967) could be explained on the
assumption of a regular octahedral coordination of
M(II). The measured magnetic susceptibility of the
compound Fe-In (type 4) (Reedijk, 1969) indicates a
fairly regular octahedral configuration for the Fe(Il)
ion, while the small quadrupole splitting in the M&ss-
bauer spectrum (Bancroft, Mays & Prater, 1969) of
the Fe-Fe complex suggests that only small deviations
from cubic symmetry are present.

We have inspected the presence of a more regular
octahedron by carrying out a refinement with con-
straints: equal Fe(3)-N(1) and Fe(3)-N(2) distances.
The atoms N(1) and N(2) kept their separate thermal
parameters, but were given positions x, y, z and %, j, Z.
After each cycle, the positional shifts of these atoms

HEXAKIS(METHYL CYANIDE)METAL(II) TETRACHLOROMETALLATES(III)

were Ax, Ay, Az and —A4x, — Ay, — A4z respectively.
This refinement resulted in R,,=0-048 and R=0-050.
On account of the R,-ratio test the model with con-
straints (Table 6) should be rejected.

Table 6. Numerical data for R, -ratio tests

The symbols are explained in Hamilton (1965), significance
level o =0-005.
Investigated are twinned structures with p=0-141.
I I 111

Acentric model P3  Centric model P3 Acentric model with
equal Fe-N distance

Ry 00467 0-0656 0-0482
n 1650 1650 1650
m 87 45 84

Ru(IT)/ Ru(1) = 1-405
Ra2. 1563. 0.005=1:022

Ry(I11)/ Ru(1) =1-032
R3, 1563, 0.005=1'004

In view of the uncertainties due to twinning, how-
ever, we are of the opinion that in this instance no
definite choice between the two models can be made.
Interatomic distances occurring in the model with con-
straints are likewise given in Table 5(b).

The Fe-N distance of the second model agrees very
well with the value 2:16 A found for the compound
Fe(NCCH;)¢(FeCl,),. The longest Fe-N distance (2:24
A) of the first model is in accord with the Fe-N length
(2:25 A) observed in the complex (HEDTA) FeOFe
(HEDTA) >~ (Lippard, Schugar & Walling, 1967).

Disregarding the carbon atoms, the molecular sym-
metry of the coordination about Fe(Il) is C; for the
model without constraints and S otherwise. In view
of the nearly right angles between the Fe-N bonds, the
approximate symmetry of the constrained model is the
cubic one O,

The relevant distances and angles involving the lig-
and atoms for models with and without equal Fe(3)-N
distances are summarized in Table 7. Although the
predicted standard errors for C—C and C-N bonds are
about 0-015 A, we believe that the true errors are at
least 0-03 A, since their positions near pseudo-mirror
planes introduce large correlations. In both models the
average values for chemically equivalent distances are
C-C=1-51 A and C-N=1-10 A. Constant, Daran &
Jeannin (1970) found the value 1-10 A for the C-N dis-
tance in Fe(NCH)¢(FeCl,),. In gaseous CH;CN (Dan-
ford & Livingston, 1955) these values are 1:47 (2) and
1-16 (3) A, respectively. Reedijk, Zuur & Groeneveld
(1967) observed a positive shift for the C-N stretching
frequency in several M(II) (NCCH,)q ions, which is con-
sistent with an increase of the C-N force constant
(Purcell & Drago, 1966). According to Purcell (1967)
the shortening of the C-N bond is in agreement with
the increased force constant for the C-N stretching
vibration.

We find non-linear Fe-N-C and N-C-C angles.
Judged by statistical criteria, the deviation fromlinearity
is, at least for the second type of angles, not significant,
the standard deviations of these angles being about 2°.
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Table 7. Distances (A) and angles (°) involving carbon
and nitrogen atoms in the Fe-Fe compound (p=0-141)

Values are given for the model without constraints (a) and
the model with equal Fe(3)-N distances (b).

Columns 2 and 4 refer to average values.

a b

N(1)=C(1) 113 109
N(2)—C(2) o7 110 111 110
c(ly -C(3) 154 1-51 )
C(2)—-C(#) 147 151 151 1Sl
Fe(3)-N(1)-C(1) 5 o 173 o
Fe(3)-N(2)-C(2) 167 177
N(1)—C(1)—C(3) 176 . 176 o
N(2)-C(2)-C(4) 174 174

The observed deviations may be attributed to packing
effects.

It is interesting to note that non-linear C-C-N angles
are found in tetracyanoethylene oxide (Stucky, 1971).
This author argues that both packing effects and bond-
ing-electron distributions are responsible for the ob-
served distortions.

The space group of Fe(NCH)¢(FeCl,), (Constant,
Daran & Jeannin, 1970) is P3 and the lattice constants
are a=10-29 and ¢=628 A. A comparison of Fig. 4
in their article (used is a left-handed coordinate sys-
tem) with Fig. 2 reveals that the two structures are not
isomorphous.

For one thing the ligands and chlorine atoms of the
hydrogen cyanide compound are not located near the
planes {3030). Moreover the relative z parameters of
the atoms in the two FeCl, tetrahedra differ consider-
ably from ours.

All calculations were performed on the IBM 360/50
computer of the Central Computing Laboratory of the
University of Leiden. We acknowledge the contribu-
tions of Mr H. P. Zoetmulder during the beginning of
the investigations on the Fe-Fe compound. We ap-
preciate stimulating discussions with Mr R. A. G. de
Graaff and Dr J. Reedijk. We thank Mr A. Verhoorn
(Geological Institute, University of Leiden) for taking
the precession photographs. The investigations were
supported with financial aid by the Netherlands Or-
ganization for the Advancement of Pure Research
(ZWO).

APPENDIX

Using equation (2) we derived the following expres-
sions:

1- 2 p ., 12 172
F,,(hkl)={1 Sy k-, P, (khl)} —4
@

A C28B-10*

2453

otr )= [{7- 2 OUF KDL k)|

+{lfﬁ, o[F;(khl)]F;(khl)}Z] JEHKT) . (8)

These equations were used for correction of all observed
reflexions and the assignment of new weights. Due to
errors in the measured values of F,, expression A can
assume negative values. A boundary A > 5-30 was used
in the program. For 4 <5-30 the reflexion was treated
as a non-observed one and assigned the value ([4])Y/2
The non-observed reflexions were not changed.
Accepting trigonal symmetry and disregarding the
small anomalous scattering, mean values and e.s.d.’s
for a number of reflexions hkil, ihkl, kihl, hkil, ihki
and kihl were computed. The e.s.d.’s of these reflexions
were compared with the individual standard errors re-
sulting from counting statistics, absorption and the
applied polynomial expression. The e.s.d.’s are 1-65
times the standard errors for reflexions with A%k and
1-25 times the standard errors for reflexions with A=*k.
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